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Exploring the Effects of Perceived
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on Performance Measures
of Human–Robot Collaborative
Assembly
The use of Human–Robot Collaboration (HRC) in assembly tasks has gained increasing
attention in recent years as it allows for the combination of the flexibility and dexterity of
human operators with the repeatability of robots, thus meeting the demands of the
current market. However, the performance of these collaborative systems is known to be
influenced by various factors, including the complexity perceived by operators. This
study aimed to investigate the effects of perceived complexity on the performance measures
of HRC assembly. An experimental campaign was conducted in which a sample of skilled
operators was instructed to perform six different variants of electronic boards and
express a complexity assessment based on a set of assembly complexity criteria. Perfor-
mance measures such as assembly time, in-process defects, quality control times, offline
defects, total defects, and human stress response were monitored. The results of the study
showed that the perceived complexity had a significant effect on assembly time, in-
process and total defects, and human stress response, while no significant effect was
found for offline defects and quality control times. Specifically, product variants perceived
as more complex resulted in lower performance measures compared to products perceived
as less complex. These findings hold important implications for the design and implemen-
tation of HRC assembly systems and suggest that perceived complexity should be taken into
consideration to increase HRC performance. [DOI: 10.1115/1.4063232]
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1 Introduction
In today’s market, manufacturers are required to produce

high-value-added products that meet customer demands at a com-
petitive price, while also complying with sustainability require-
ments related to environmental and social aspects. As a result,
manufacturers must offer a wide range of continuously improved
products at competitive prices in order to maintain and increase
their market share. Accordingly, balancing high levels of customer
adaptation and cost efficiency is crucial in achieving this goal.
Research has shown that an increase in product variety not only
can lead to a higher market share and sales volume but also
increases product complexity and cost [1–3] and requires a flexible
manufacturing system that can adapt to changes in product volumes
and types [4]. This is especially relevant in the automotive and
electronic industries, where frequent changes and an increased
number of product variants with more features and functionality
are required to meet customer expectations. Managing a large

product assortment and assembly conditions can be challenging
for manufacturers; however, effectively navigating this complexity
can result in a competitive advantage in the industry [5,6].
One approach to achieving mass customization is the use of a tra-

ditional manual assembly system, which allows human operators to
perform all assembly tasks. However, this approach may result in a
decrease in productivity and an increase in costs [7]. On the other
hand, automatic assembly systems offer high production rates and
cost savings, but they may not be suitable for mass customization
[8]. Flexible assembly systems using collaborative robots, or
cobots, offer a solution by combining the flexibility of human oper-
ators with the precision and accuracy of robots, typically resulting
in increased productivity and cost savings [4,9].
The collaboration between humans and cobots, known as

human–robot collaboration (HRC), has garnered significant atten-
tion in recent years due to the potential benefits and challenges asso-
ciated with this approach [10]. Previous research in the manual
assembly field has shown that assembly complexity and its percep-
tion can significantly affect human and process performance
[1,11,12]. However, there has been limited research on the impact
of perceived assembly complexity on the performance of human–
robot collaboration in assembly tasks. Building on these findings,
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the present research aims to extend the investigation by examining
the effects of varying product complexity on perceived complexity
and assembly performance measures in the context of HRC assem-
bly. This research allows for an understanding of how the perceived
complexity of human operators in HRC tasks is influenced by the
complexity of the product being assembled.
The main innovative contribution to the field provided by this

research is to examine the impact of perceived complexity on
several HRC performance measures that encompass the entire
manufacturing process. These measures, which include character-
istics of the assembly process, the quality control process, and
human aspects, are (i) assembly times, (ii) quality control times
carried out after the assembly, (iii) in-process defects (catering
for errors due to both human and collaborative robots), (iv)
offline product defects (i.e., defects detected during offline inspec-
tion), (v) total defectiveness (i.e., sum of in-process and offline
defects) and (vi) human stress response during assembly. By con-
sidering both process performance and human factors, this
approach provides valuable insights into the relationship
between performance measures and perceived complexity in
HRC assembly tasks.
In order to investigate the effects of perceived complexity on

HRC performance measures, the study involved the assembly of
six variants of electronic boards with different levels of complexity.
Skilled operators, assisted by cobots, performed the assembly tasks
in a collaborative setup where both humans and cobots worked
together in the same workspace [13]. This collaborative configura-
tion is commonly observed in manufacturing environments and
facilitates the combination of human dexterity and adaptability
with the precision and repeatability of cobots. The adoption of
this collaborative mode aimed to investigate the impact of perceived
complexity on the performance measures of human–robot collabo-
rative assembly in a real-world context. To ensure a comprehensive
analysis of the effects of perceived complexity, a product-centered
approach was adopted. The product itself was modified to create
different assemblies with varying levels of complexity. This
approach is often used in the manufacture of highly customized
product variants, where collaboration modes and parameters
remain consistent. By focusing on the product and its complexity
variations, the study aimed to capture the practical implications of
perceived complexity on human–robot collaborative assembly per-
formance measures in an industry-relevant context.
The study’s results provide insights into the association between

performance measures of human–robot collaboration in assembly
tasks and perceived complexity and offer practical implications
for designing and implementing high-performing collaborative
systems. Furthermore, by considering both process performance
and human-related factors, the proposed approach aligns with the
goals of sustainable, high-quality, resilient, and human-centric
HRC systems within the context of the Industry 5.0 paradigm.
The remainder of the paper is organized as follows. In Sec. 2, the

most recent research studies on human–robot collaboration are
reviewed. Section 3 presents the experimental details and
methods adopted in the present study. In Sec. 4, results are pre-
sented and discussed, and the conclusions and future work are out-
lined in Sec. 5.

2 Literature Review
In recent years, there has been a growing interest in the field of

HRC, resulting in a significant increase in research activities and
publications. HRC involves the collaboration between humans
and robots working together in a shared workspace to perform a
task, with each partner contributing their specific skills and abilities
[14,15].
The literature on HRC emphasizes the importance of providing

technologies that facilitate natural and smooth interactions
between humans and robots. Wang et al. [16] highlighted the impor-
tance of the communicative interface between robots and humans,

to achieve a symbiotic HRC. Inkulu et al. [17] highlighted the pros-
pects and major challenges of HRC, pointing out that human–robot
communication modes, such as gestures and speech, enable fluent
and immediate interaction, although they still need to be explored
in depth.
To date, most research on HRC has focused on safety, commu-

nication, and human–robot interaction. Much attention has been
given to safety concerns and the development of effective
safety measures to support HRC. Indeed, safety is a major
concern, especially for robots operating at high speeds and
under heavy loads. The introduction of ISO 10218-1:2011 [18]
and ISO 10218-2:2011 [19] defined the main hazards that can
be encountered when implementing industrial robots in manufac-
turing environments. In addition, the subsequent ISO/TS
15066:2016 [20] allowed for greater robot’s autonomy while
working closely with humans. Zanchettin et al. [21] introduced
a metric to assess safety in collaborative manufacturing processes.
This metric considers human–robot distance, robot type, and
operating speed as critical variables affecting safety in HRC. In
addition, the sharing of space and time between humans and
robots can lead to stress and fatigue issues, which can affect
the quality of the output produced and lead to defects in products
and processes. Gervasi et al. [22] have developed a conceptual
framework for evaluating HRC that includes variables such as
mental and physical ergonomics, safety, communication and
interaction, team organization, and social acceptance. Advanced
adaptive robotic systems are also needed to improve production
efficiency.
In manufacturing, concepts such as stress, fatigue, mental work-

load, and ergonomics have long been addressed [23–25]. Over the
years, many tools and methods have been proposed to assess these
factors. Self-reporting instruments include the NASA-TLX [26] and
the Subjective Workload Assessment Technique (SWAT) [27].
However, these tools have been found to be inappropriate and unre-
liable in manufacturing environments [28]. Consequently, in recent
years, attention has shifted to investigating the impact of objective
physiological measures, such as heart rate variability (HRV) and
electrodermal activity (EDA), on the operator’s state during an
HRC task [29–32]. Kulić and Croft [33] investigated how the
human physiological state, measured by HRV and EDA, can be
affected by the movements of an industrial robot. In this study,
proximity and speed were shown to have a significant effect on
mental stress. Similarly, Arai et al. [34] evaluated the effect of
robot movements, varying operating speed and distance from the
operator, on EDA. Kühnlenz et al. [35] studied the effects on
humans through HRV and EDA of different trajectory patterns of
an industrial robot.
Physical and cognitive aspects are critical factors in the design of

HRC tasks [36]. Colim et al. [37] provided guidelines for the design
of safe and ergonomic collaborative workstations. In a repetitive
and hazardous assembly task, cobots can be used to reduce potential
risks to the operator and improve human well-being. However, few
studies have investigated the effect of human–robot collaboration
on the mental and physical workload perceived by humans.
Khalid et al. [38] investigated the safety of HRC systems when
using high-load robots, defining potential hazards that include
physical and mental strain associated with a collaborative task.
Galin and Meshcheryakov [39] analyzed both human and robot-
dependent factors that may affect the efficiency of HRC. Among
the human factors, emotional and cognitive aspects were found to
be critical for HRC efficiency.
Overall, while much attention has been paid to safety, communi-

cation, interaction, and human physical and cognitive aspects in
HRC, there is a lack of research exploring the impact of task com-
plexity perceived by humans on performance measures. This gap in
the literature provides an opportunity for further research to inves-
tigate the relationship between assembly complexity and perfor-
mance measures, both process- and human-related measures, such
as production time, defect rates, and human-centered measures,
respectively, in HRC settings.
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3 Experimental Setup and Methods
3.1 Experimental System Configuration. An experimental

campaign involving six expert operators and a single-armed collab-
orative robot, the UR3e from Universal Robots™, equipped with an
OnRobot RG6 gripper with two flexible fingers (see Fig. 1), was
designed and carried out. The RG6 gripper, produced by
OnRobot™, was selected for its versatility and ability to handle a
variety of objects, even of small dimensions. Each operator under-
went preliminary training sessions prior to the assembly trials in
order to ensure a consistent level of proficiency among the partici-
pants and to minimize the potential impact of varying skill levels on
the results. These training sessions were designed to familiarize the
operators with the assembly process and equipment.
During the experimental trials, each operator assembled six elec-

tronic boards (Sec. 3.2) in random order with the support of the
UR3e cobot.
Manufacturing process consisted of two phases: (i) assembly

phase and (ii) quality control phase. During the assembly phase
of each electronic board, the cobot was used to assist operators in
assembly operations by passing appropriate components in a prede-
termined sequence. The parts of the electronic boards were placed in
a specific position within the HRC workstation to be picked up by
the cobot since the cobot was unable to recognize parts. Future
research will focus on the use of visual recognition systems, inte-
grated with machine learning techniques, to enable the cobot to rec-
ognize parts. The assembly sequence was determined according to
circuit theory [40]. In fact, for the circuit to work, a complete path
must exist between the energy source (power) and the lowest energy
point (ground). Furthermore, the current always seeks the path of
least resistance to earth, and between two possible paths, the
current goes through the path of least resistance. This is because
the electrical energy within the circuit is dissipated by its compo-
nents, converting the electrical energy into other forms of energy,
such as light, heat, and sound. As a result, the strategy for assembl-
ing electronic boards was defined based on the path of the electric
current.
During assembly, human operators decided when activating the

cobot to pick up the parts and bring them to the storage area by
pressing a button near the workstation. The cobot used the
MoveL movement for vertical actions, such as picking up and
depositing the parts, and the faster MoveJ movement for other
actions, such as moving the parts to the storage area. Table 1
shows cobot and gripper parameters used in the HRC assembly.
After the assembly phase, in which electronic board variants were

assembled through HRC, a skilled quality controller checked their
correct functioning and identified residual defects during the
quality control phase. The advantage of using electronic boards is
the possibility of verifying their proper functioning by connecting

them to the PC and running the code. During the quality inspection,
the operator who was in charge of the assembly of the electronic
board was asked to fill out a questionnaire on the perceived com-
plexity of the assembly, which will be presented in Sec. 3.4. In
detail, at the end of each board variant assembly, the operator eval-
uated perceived complexity by providing evaluations on some
assembly complexity criteria, while at the end of the six assemblies,
an overall assessment of the importance of the complexity criteria
was given (as per Sec. 3.4). Furthermore, during assembly and
quality control phase, data on some performance measures were
collected, which will be illustrated in Sec. 3.3.

3.2 Product Assembled. For the assembly of the six elec-
tronic boards, the ARDUINO UNO Starter Kit from ARDUINO®

was used. This kit includes the physical components necessary
for assembling the electronic boards (listed in Table 2) and a soft-
ware package for programming the microcontrollers. In Table 2,
the type and quantity of each component are indicated for each
product variant (Variant A–Variant F).
These six products have been selected to cover a wide range of

product complexity. According to previous studies [41–43],
product variants’ total complexity is obtained according to the struc-
tural complexity model as a combination of the complexity of
product components (C1), the complexity of assembly connec-
tions/liaisons (C2), and the complexity of product architecture
(C3), according to Eq. (1)

C = C1 + C2 · C3 (1)

In this study, the Lucas Method [44], widely used in literature
and for several industrial applications, was applied to define the
complexity of product components and connections (C1 and C2).
On the other hand, product architecture complexity (C3) was
derived as the average of singular values of the adjacency matrix
of the product [41]. In Table 2, the product variants are listed
according to increasing complexity C. It is noteworthy that an
increase in the number of parts does not necessarily imply an
increase in complexity C. As mentioned earlier, the products were
assembled in random order by the six operators. Randomizing the
order of the six product variants during assembly minimized the
impact of learning effects and increased internal validity. This
approach controlled for potential confounding variables and pre-
vented observed performance measure differences between
product variants from being attributed to increased operator famil-
iarity or experience with the assembly process or equipment.
Thus, although the manufacturing sequence was not explicitly con-
trolled, randomization helped minimize its potential impact on the
results.

Fig. 1 Collaborative assembly workstation showing the single-armed cobot UR3e (Universal
Robots™) with the RG6 gripper (OnRobot™), and product components assembled by an oper-
ator wearing the Empatica E4 wristband
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Figure 2 shows three examples of the six electronic boards
assembled with the support of a cobot. The first product, Variant
A, is the simplest of the six selected products, Variant C is at
medium-level complexity, while the last product, Variant F, is the
most complex.

3.3 Data Acquisition. During the manufacturing process,
some human and process performance parameters were collected,
including physiological data from the operators, the number of
total defects (both those occurring during assembly, i.e., in-process
defects, and those detected during offline quality control, i.e., offline
defects), the assembly time, and the time spent on quality control.
The selected performance measures were chosen based on their rel-
evance to the objectives of the study and a thorough literature
review that followed the survey proposed by Coronado et al. [36].
While there are many other metrics available for evaluating the

performance of collaborative systems, the selected measures were
deemed most appropriate for this study due to their widespread
use in the manufacturing industry to evaluate the quality of
human–robot interaction and collaboration, especially in the
context of Industry 5.0, and their ease of monitoring throughout
all stages of the production process.
In the first phase of the manufacturing process (assembly phase),

information about the assembly time, in-process defects, and stress
were collected. On the other hand, in the second phase (quality
control phase), information about quality control time and offline
defects was collected. Those parameters, plus the total number of
defects (sum of in-process and offline defects), are the performance
measures depicting the overall manufacturing process.
In the HRC assembly phase, the operator clocked the minutes to

complete each electronic board’s assembly. The stopwatch started
when the cobot picked up the first part and stopped when the oper-
ator considered the assembly finished. Even when errors occurred,
the stopwatch was never stopped. In the quality control phase, the
operator recorded the time in minutes spent on quality control. In
this case, the time started when the electronic board reached the
quality control station and was stopped when the board worked
properly. The stopwatch was never stopped during the quality
control phase.
Regarding in-process and offline defects, classification was per-

formed as follows: (i) “Wrong part”, i.e., a different component is
used instead of the correct one; (ii) “Wrong position”, i.e., the com-
ponent is placed in the wrong position; (iii) “Part not taken”, i.e., the
cobot fails to pick up the part from the columns; (iv) “Slipped part”,
i.e., the part slips from the cobot grippers during transport to the
operator; (v) “Defective part”, i.e., the part is defective and does

Table 1 Cobot and gripper parameters used in the HRC
assembly

Cobot Gripper

Joint speed (deg/s) 200 –
Joint acceleration (deg/s2) 200 –
Linear speed (mm/s) 200 –
Linear acceleration (mm/s2) 200 –
Distance (mm) – 16
Force (N) – 80

Table 2 Characteristics of the six assembled electronic boards

Variant A Variant B Variant C Variant D Variant E Variant F

Long wires – 1 2 8 9 13
Short wires 1 3 5 3 6 4
Resistors 1 1 4 6 2 2
Pushbuttons – 2 4 – 2 1
LED 1 1 – 1 – –
Phototransistor – – – 3 – –
Potentiometer – – – – 1 1
Piezo – – 1 – – –
LCD – – – – – 1
Battery snap – – – – 1 –
DC Motor – – – – 1 –
H-bridge – – – – 1 –
No of parts 3 8 16 21 23 22
C1 1.39 2.87 5.10 6.35 7.25 6.72
C2 2.98 5.44 13.84 14.58 21.79 26.02
C3 0.94 0.90 0.90 0.93 0.83 0.84
C 4.20 7.77 17.51 19.95 25.35 28.61

Fig. 2 Example of assembled electronic boards: (a) Variant A, (b) Variant C, and (c) Variant F
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not allow the electronic board to function correctly; (vi) “Incorrectly
inserted part”, i.e., the part is inserted in the correct position but not
properly. Obviously, for offline defects, the two categories of
defects related to cobot errors (“Part not taken” and “Slipped
part”) were not present. The assembly operators and the quality
control operator collected in-process and offline defect data for
each electronic board, indicating the number of defects found for
each category.
During the HRC assembly phase, information on the stress level

of the operators was collected. Physiological data were measured
with the Empatica E4 wristband (Empatica Srl, Milan, Italy), a non-
invasive biosensor that records information on ElectroDermal
Activity (EDA) at a frequency of 4 Hz (see Fig. 1). EDA is com-
monly used as an indicator of human stress response, being
linked to Skin Conductance Response (SCR) [32]. In detail, contin-
uous signals of tonic and phasic activity constitute the EDA signal.
Changes in Skin Conductance Level (SCL) are the best indicator of
tonic activity, which is defined as long-term fluctuations in EDA
that are not explicitly triggered by external stimuli. Instead,
phasic activity describes brief variations in EDA triggered by
stimuli typically recognized and presented externally. Skin Conduc-
tance Responses (SCRs), i.e., amplitude changes from the SCL, can
therefore be detected by examining the phasic activity signal. In this
research, the normalized peak amplitude of the SCR was employed
as a metric for measuring the stress levels of operators during the
HRC assembly of electronic boards. For each operator, the
Human stress response can be defined as follows:

Human stress response =

∑NP

w=1
aw

NP

⎛
⎜⎜⎝

⎞
⎟⎟⎠ − amin

amax − amin

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· 100 (2)

where aw is the amplitude of the wth SCR peak, NP is the total
number of SCR peaks during the assembly of a certain product
variant, amin and amax are, respectively, the minimum and
maximum amplitude of SCR peaks obtained during the assembly
by each operator.
In this study, the EDA signal was analyzed using the online EDA

Explorer software [45]. This software cleans the raw signal of any
external noise and identifies peaks in the physiological signal.
Figure 3 shows an example of the software output. The trend of
the physiological signal (expressed in µS) is the blue line and the
green vertical lines represent the peaks identified by the software.
In addition, the amplitude of a generic peak (aw) is shown in red
as an example. Furthermore, after assembly, data on perceived com-
plexity were acquired through questionnaires submitted to opera-
tors, as described in Sec. 3.4.

3.4 Perceived Complexity Assessment. Complexity, a multi-
faceted concept that has been studied extensively and has various
definitions and measurements depending on context and research
goals, can be assessed objectively, based on inherent task character-
istics, or subjectively, considering both task and performer charac-
teristics [46].
This study proposes a complexity assessment framework based

on the 16 complexity criteria developed by Falck and Rosenqvist
[47] and later adapted for industrial manufacturing sectors [48–
50]. The complexity assessments were carried out in collaboration
with the company’s ergonomist and engineers in the manufacturing
engineering department. In order to ensure the easy and quick
assembly of the products, Table 3 provides a brief description of
each ith criterion (i= 1,…, 16), expressed for an easy and fast
assembly [50]. For a more detailed description and guidelines for
using these criteria in a practical setting, refer to the papers by
Falck et al. [50,51].
For each product j, the importance of each criterion i was deter-

mined by asking each operator k to assign an importance score (Iijk)
using a five-level ordinal scale (see Table 4), based on their per-
ceived relevance for low product complexity. In addition, each
operator was asked to indicate the level of agreement (Vijk) with
each criterion i in relation to the assembled product j, using the five-
level ordinal scale shown in Table 5.
To obtain an estimate of perceived complexity at the individual

level, the study combined the operators’ ratings of importance
and level of agreement with the 16 criteria. However, as the criteria
were expressed using linguistic ordinal scales, a systematic method
was required to process the data. To this end, the Multi-Expert-
Multi-Criteria Decision Making (ME-MCDM) method developed
by Yager [52] was adopted as the synthesis approach.
ME-MCDM is a widely used method for aggregating individual

operator evaluations to obtain an overall synthetic linguistic value
[52]. It combines linguistic information provided for non-equally
important criteria using maximum, minimum, and negation opera-
tors. The logic behind the ME-MCDM method is that the impact
of low-importance criteria on the overall aggregated value should
be marginal, while high-important criteria should have a significant
impact on the definition of the aggregated evaluation. In the pro-
posed approach, the perceived complexity of the assembly of a
product j expressed by the operator k (PCjk) can be calculated
using fuzzy logic as follows [53]:

PCjk =Mini[Max{Neg(Iijk), Vijk}] (3)

where Neg(Lx)=Lt−x+1 is the negation of Lx, with Lx the xth level of
the scale and t the number of scale levels, i.e., 5 in this case. For
instance, Neg(L1)= L5 and Neg(L2)= L4.
The rating process for the perceived complexity of a product

involves assigning values on a five-point ordinal scale, with the
highest level representing low complexity and the lowest level rep-
resenting high complexity. This scale is based on the criteria listed
in Table 3, which are considered to be low-complexity criteria.

Fig. 3 Example of EDA signal processed with EDA explorer
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Table 6 provides details on the five complexity levels used for indi-
vidual perceived complexity assessment.
To illustrate how this scoring process works, consider a hypothet-

ical product j, and an operator k, who scores all criteria as
L5—“Indispensable” for importance and L5—“Totally agree” for
agreement. According to the proposed aggregation method, this
operator’s individual perceived complexity PCjk for product j
would be L5—“Low,” meaning that the operator finds the product
extremely simple and considers all criteria essential for a simple

Table 3 Complexity criteria of assembly, adapted from Falck et al. [47] to suit the electronic platform assembly

Criterion i Assembly low-complexity criterion Description

1 Few different ways to perform assembly Complexity is high if the parts can be assembled/executed correctly in
different ways Otherwise, complexity is low if there is a standardized
(accepted) way to perform the task

2 Few parts/components and details and few operations If there are few details to assemble, a small number of operations on the
parts, pre-assembly, and module creation (integrated assembly), the
complexity is low. Otherwise, complexity is high if there are many details
and partial operations

3 Quick and easy operations (no time-demanding operations) Complexity is low if the solutions are easy and quick to assemble (not
time-consuming). Otherwise, if there are time-consuming operations, the
complexity is high

4 Clear assembly location of parts/components (immediate
understanding of where to place parts within the structure)

If the assembly position of parts and components is clear, the complexity is
low; otherwise, it is high

5 Good accessibility to the structure during assembly If the accessibility to the structure is good (i.e., sufficient for hands/tools), the
complexity is low; otherwise, it is high

6 Fully visible operations (operations do not require orientation
of the assembly for better visibility)

If the assembly involves visible operations (i.e., in the field of view when
looking directly at the structure), the complexity is low; otherwise, it is high

7 Ergonomically easy handling of the structure If there are good ergonomic conditions, the complexity is low; otherwise, it
is high

8 Operator-independent operations that do not require much
experience to be performed correctly

If additional training (specialized knowledge) is required beyond the
common introductory sessions, then the complexity is high. If the operations
do not require additional training, then the complexity is low

9 Operations do not have to be performed in a certain order If the operations can be performed without following a specific order, that is,
they are independent of the order of assembly, the complexity is low.
Otherwise, complexity is high if the operations must be performed in a
certain order/sequence to complete the assembly correctly

10 Unnecessary intermediate visual checks during assembly to
assess the quality and correctness of the structure

If no intermediate checks are required during assembly to assess the quality
and correctness of the structure, the complexity is low. Otherwise,
complexity is high if visual checks, i.e., careful subjective assessment of
quality, are required

11 Operations require little precision, accuracy and attention. If operations do not require precision and accurate assembly is not necessary,
the complexity is low

12 No need for adjustments and corrections (due to errors or
inaccuracies) during assembly

The complexity is low if no adjustments are needed due to errors or
inaccuracies. Otherwise, the complexity is high

13 Easy to assemble and self-position parts/components that can
be controlled in three dimensions: X, Y, and Z

If the surrounding environment varies, where the parts and components will
be assembled, or if the detail to be placed depends on the surrounding
components, then the complexity is high. Examples of when the geometric
environment is varied are: several holes must overlap, components not
joined, and components moving relative to each other

14 No detailed instructions are needed and the operator can
proceed intuitively

If no detailed instructions are required, i.e., the operator can proceed
intuitively to make the assemblies, the complexity is low. Otherwise, the
complexity is high

15 The structure does not involve soft and flexible materials
(i.e., it is form-resistant)

Complexity is low if the components are rigid and compact and do not
change size or deform during assembly. If the structure involves assembling
soft and flexible materials, complexity is high

16 There is immediate feedback on correct assembly (e.g., with a
clear click and/or compliance with reference points)

Complexity is low if there is immediate feedback of correct assembly, such
as through a clear clicking sound and/or adherence to reference points.
Otherwise, the complexity is high

Table 4 Scale levels and semantic meanings for assessing
product low-complexity criteria importance (Iijk)

Scale level Importance

L1 Negligible
L2 Preferable
L3 Important
L4 Very important
L5 Indispensable

Table 5 Scale levels and semantic meanings for assessing
agreement degree with low-complexity criteria (Vijk)

Scale level Importance

L1 Totally disagree
L2 Disagree
L3 Relatively agree
L4 Agree
L5 Totally agree

Table 6 Scale levels and semantic meanings for the
assessment of perceived complexity (PCjk)

Scale level Perceived complexity

L1 High
L2 Rather high
L3 Moderate
L4 Rather low
L5 Low
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assembly. Conversely, if the operator rated all criteria importance as
L5—“Indispensable” and the level of agreement as L1—“Totally
disagree”, then his individual perceived complexity would be
L1—“High”. In this case, the operator considers the product to be
extremely complex and considers all criteria to be essential for a
simple assembly. In a different scenario, if the operator assigned
L1—“Totally disagree” for agreement degrees, but considers all
the criteria to be negligible, resulting in L1—“Negligible” for impor-
tance, the procedure leads to obtain L5—“Low” for the individual
perceived complexity.
Overall, the perceived complexity assessment process involves

assigning importance and agreement values to specific criteria,
which are then aggregated to determine the individual perceived
complexity level of a product assembly.

3.5 Statistical Analysis. The data gathered for the six elec-
tronic boards assembled by the 6 operators were collected in a
matrix, one line for each product (i.e., 36 rows) with the observed
parameters listed in columns. In detail, the parameters related to per-
formance measures recorded in the columns were as follows:

• assembly time,
• quality control time,
• in-process defects,
• offline defects,
• total defects, and
• human stress response (see Eq. (2)).

Furthermore, additional columns were created containing values
related to perceived complexity assessment, as follows:

Table 7 Descriptive statistics of performance measures of the six products assembled

Performance measure Product Mean St. dev. Min Max

Assembly time (min) Variant A 1.889 0.627 1.317 2.800
Variant B 3.928 1.776 1.983 6.967
Variant C 7.314 1.620 5.833 10.200
Variant D 9.522 2.238 5.783 12.117
Variant E 11.719 2.364 8.850 14.800
Variant F 15.320 4.770 10.430 23.730

Quality control time (min) Variant A 0.125 0.061 0.000 0.150
Variant B 0.431 0.436 0.150 1.050
Variant C 0.769 0.961 0.150 2.083
Variant D 0.656 0.791 0.150 2.083
Variant E 1.356 1.875 0.150 4.033
Variant F 2.308 1.633 0.150 5.183

In-process defects (−) Variant A 0.000 0.000 0.000 0.000
Variant B 0.667 0.816 0.000 2.000
Variant C 1.000 0.894 0.000 2.000
Variant D 1.833 0.983 0.000 3.000
Variant E 3.167 1.602 1.000 6.000
Variant F 3.667 0.816 3.000 5.000

Offline defects (−) Variant A 0.000 0.000 0.000 0.000
Variant B 0.333 0.516 0.000 1.000
Variant C 0.500 0.837 0.000 2.000
Variant D 0.500 0.548 0.000 1.000
Variant E 0.500 0.837 0.000 2.000
Variant F 1.833 1.169 0.000 3.000

Total defects (−) Variant A 0.000 0.000 0.000 0.000
Variant B 1.000 0.894 0.000 2.000
Variant C 1.500 1.378 0.000 3.000
Variant D 2.333 1.211 0.000 3.000
Variant E 3.667 1.751 1.000 6.000
Variant F 5.500 1.049 4.000 7.000

Human stress response (%) Variant A 0.000 0.000 0.000 0.000
Variant B 3.180 2.620 0.330 7.350
Variant C 7.941 2.447 4.021 11.124
Variant D 12.00 3.390 7.750 16.650
Variant E 11.99 2.870 9.210 17.310
Variant F 24.72 5.740 19.840 34.870

Table 8 Classification of in-process (In) and offline (Off) defects for the six assembled products

Wrong part
Wrong
position Part not taken Slipped part Defective part

Incorrectly
inserted part

Product In Off In Off In Off In Off In Off In Off

Variant A 0 0 0 0 0 0 0 0 0 0 0 0
Variant B 0 0 1 1 3 0 0 0 0 0 0 1
Variant C 0 0 5 2 3 0 0 0 0 0 0 1
Variant D 0 0 4 3 4 0 0 0 0 0 3 0
Variant E 0 0 6 3 11 0 2 0 0 0 0 0
Variant F 0 0 11 11 10 0 0 0 0 0 1 0
Total 0 0 27 20 31 0 2 0 0 0 4 2
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• Individual importance evaluations of each of the 16 criteria (as
per Table 4).

• Individual agreement degree evaluations of each of the 16 cri-
teria (as per Table 5).

• Individual perceived complexity derived according to Eq. (3).

The primary statistical analysis consisted of calculating the main
descriptive statistics for performance measures for each of the six
assembled electronic boards (see Table 7 in Sec. 4).
To evaluate if the 16 criteria selected for the analysis compose a

suitable set to assess complexity, a pairwise correlation analysis
between the evaluations on the agreement degrees provided by
operators for each product (Vijk) was performed (see Table 9).
Spearman correlation coefficient was adopted being the agreement
degrees expressed on the ordinal scale, and the significance of the
correlation was assessed by analyzing the p-values [54].
Then, a pairwise correlation analysis was performed to obtain a

first indication of the relationships between the agreement degrees
of the 16 complexity criteria and performance measures (as
shown in Table 10).
Finally, to examine the relations between the individual per-

ceived complexity values derived according to Eq. (3) and the per-
formance measures (see Fig. 4), an Ordinal Logistic Regression
(OLR) was adopted, as perceived complexity is an ordinal response
defined using a linguistic scale [55]. The OLR is an ordinal regres-
sion model that can only be applied to data that meet the propor-
tional odds assumption. The coefficients in the model are
estimated using maximum likelihood, computed by using itera-
tively reweighted least squares [55]. To analyze and interpret the
results of the OLR, two steps should be followed [54,56]. First,
the p-value and coefficients are examined to analyze the association
between the performance measures and individual perceived com-
plexity. The coefficients are useful for determining whether a
change in the predictor variable makes any of the events more or
less likely, and the odds ratios are provided to compare the odds
of two events. Second, the p-values for the Goodness-of-Fit Tests
and the measures of association are examined to determine how
well the model fits the data. Values of measures of association,
including the Somers’ D, Goodman and Kruskal indices, and Ken-
dall’s index, close to 0 reveal that the model does not have predic-
tive ability. Results of OLR are reported in Tables 11 and 12 and
Fig. 5 of Sec. 4. All calculations were performed using the software
MINITAB®.

4 Results and Discussion
Descriptive statistics of performance measures considered in this

study are listed in Table 7, separately for each electronic board
assembled (Variant A–Variant F). An examination of the data
reveals that as the complexity of the assembly increases, there is
a tendency for performance measures to worsen as a negative
impact on assembly time, quality control time, defects rates, and
human stress response is encountered. Additionally, as the products
move from simple to more complex (i.e., from Variant A—Variant
F), the variability associated with performance measures tends to
increase, as demonstrated by the increase in standard deviation in
Table 7.
Table 8 presents the classification of in-process and offline

defects obtained for each of the six assembled product variants,
according to the classification provided in Sec. 3.3. An analysis
of the data shows that in-process defects are more frequent com-
pared to offline defects. Additionally, within the typology of
in-process defects, “Wrong position” and “Part not taken” demon-
strate the highest number of defects; whereas for offline defects,
“Wrong position” is the most prevalent category. These findings
suggest that the manufacturing process is likely facing more
issues when the products are in line rather than when they are
inspected offline. Furthermore, the frequent occurrence of
“Wrong position” for both in-process and offline defects highlights
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the need for efficient and accurate placement of parts during the
assembly process.
Table 9 displays the results of the pairwise correlation analysis

between the evaluations of the agreement degrees with the 16 cri-
teria provided by operators for each product (Vijk). Only the lower
triangular part of the matrix is shown in Table 9 because of the
symmetry of the matrix. In detail, the Spearman correlation coeffi-
cients are reported and those that resulted statistically significant at
a 95% confidence level (thus with p-value < 0.05) are asterisked.
Most statistically significant correlations are positive, showing
that as the score on the degree of agreement of one criterion
increases, the other also increases. For instance, Criterion 1 is mod-
erately correlated with Criterion 2, as operators agree that a few
different ways of performing assembly are associated with few
parts/components and details and few operations. On the other
hand, only a few of the correlation coefficients in Table 9 are neg-
ative. For instance, there is a moderate negative correlation
between Criterion 12 and 15 indicating that as operators concur
with the fact that the structure is rigid and involves few flexible
materials, they perceive a greater need for adjustments. Con-
versely, fewer adjustments and modifications are required during
assembly if the structure incorporates soft and flexible materials.
The results presented in Table 9 indicate that the highest correla-
tion coefficient value is 0.731, and there are no correlations that
approach a value of 1. Accordingly, it would not be appropriate
to eliminate certain criteria as redundant when assessing individual
perceived complexity.
Table 10 presents the results of the pairwise correlation analysis

conducted to examine the associations between the agreement
degree with the 16 complexity criteria and the data pertaining to
performance measures. In detail, for each complexity criterion,
the evaluations on the agreement degree provided by the six oper-
ators for each of the six products (36 values) are correlated with
the six performance measures. Spearman correlation coefficients
statistically significant at 95% confidence level are asterisked.
Almost all the values in Table 10 are negative because as the agree-
ment with the low-complexity criteria increases, operators concur
that the product is simple. Therefore, the simpler the product, the
less assembly time, quality control time, defects, and stress are.
The results indicate a moderate to strong correlation between
several of the complexity criteria and performance measures. It
should be noted that some criteria do not show a significant corre-
lation with the performance measures (see for example Criteria 9–
13 and Criterion 15). However, many of the correlation coefficients
have a p-value very close to the significance level.

The correlation coefficients and the asterisks on significant corre-
lation in Table 10 help to identify which criteria have a high degree
of correlation with performance measures, providing valuable infor-
mation to optimize process and design. For example, assembly
time, in-process defects, total defects, and human stress response
are highly correlated with Criterion 2, indicating that few parts,
details, and operations lead to low values of those performance
measures. Thus, this information can be used to support decisions
towards the design of products or subassemblies with fewer parts,
details, and operations in order to decrease assembly time,
defects, and human stress.
In addition, Table 10 shows no significant correlations between

the agreement degrees with complexity criteria and both quality
control time and offline defects. Although these are performance
measures of the production process, they appear to be indepen-
dent of the operators’ perception of the process’s complexity.
This suggests that factors other than the complexity perception
of the operators may have more impact on quality control time
and offline defects. Further research will be needed to understand
the underlying causes of these measures and how they can be
improved.
The individual perceived complexity values derived according to

Eq. (3) by the ME-MCDM method were obtained by considering
both the importance of the 16 criteria and the agreement degrees
with the criteria as per Sec. 3.4. The obtained values range from
“High” to “Rather low”, according to the classification provided
in Table 5. Accordingly, no operator considered the assembled
products to be extremely simple. Figure 4 illustrates the obtained
perceived complexity values and the performance measures for
the six product variants. It should be noted that there is a significant
amount of variability in the data shown in Fig. 4. This variability is
typical of data obtained through self-reported measures such as
interviews and questionnaires and should be considered when inter-
preting the results of this study.
OLR is adopted to model the relationship between quality perfor-

mances and obtained perceived complexity. In Table 11, the logistic
regression table for assembly time is provided [56].
In summary, the results of the analysis presented in Table 11

suggest that there is a statistically significant association between
perceived complexity and assembly time since the p-value associ-
ated with the predictor is less than the significance level of 5%,
and also since the p-value for the test that all slopes are zero is
less than 0.05. The odds ratio of 1.19 indicates that operators are
more likely to perceive products as more complex as assembly
time increases. The positive coefficient associated with assembly

Table 10 Spearman correlation coefficients between the agreement degree with the 16
complexity criteria for the six products assembled and the performance measures

Criterion i
Assembly

time
Quality control

time
In-process
defects

Offline
defects

Total
defects

Human stress
response

1 −0.354* −0.073 −0.353* −0.107 −0.333* −0.473*
2 −0.663* −0.183 −0.663* −0.129 −0.579* −0.714*
3 −0.533* −0.184 −0.571* −0.150 −0.509* −0.579*
4 −0.252 −0.108 −0.420* −0.100 −0.366* −0.552*
5 −0.358* −0.067 −0.427* −0.107 −0.389* −0.503*
6 −0.304 −0.073 −0.302 −0.088 −0.277 −0.465*
7 −0.222 −0.209 −0.489* −0.157 −0.451* −0.415*
8 0.027 −0.167 −0.355* −0.082 −0.332* −0.225
9 −0.017 −0.019 0.142 −0.044 0.099 −0.013
10 −0.049 0.087 −0.021 0.067 0.013 −0.064
11 −0.310 0.071 0.002 0.051 0.048 −0.186
12 −0.208 −0.159 −0.160 −0.129 −0.190 −0.238
13 −0.033 −0.130 −0.258 −0.122 −0.238 −0.277
14 −0.352* −0.045 −0.215 −0.120 −0.196 −0.212
15 −0.106 0.007 −0.252 −0.003 −0.193 −0.153
16 −0.248 −0.164 −0.446* −0.172 −0.440* −0.435*

Note: Statistically significant coefficients at 95% confidence level (thus with p-value < 0.05) are asterisked.
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time also confirms this result. In addition, the p-value of
goodness-of-fit test is greater than 0.05, not providing evidence
that the model is inadequate. Overall, this suggests that changes
in assembly time are associated with changes in the probabilities
of occurrence of the different levels of perceived complexity, as rep-
resented in Fig. 5. The data suggests that as assembly time
decreases, the probability of the operator perceiving the assembly
as “Moderate” or “Rather low” in complexity increases, while an
increase in assembly time leads to an increased probability of the
assembly being perceived as “High” or “Rather high”. However,
the last data point at the maximum assembly time for “Rather
high” complexity deviates from this trend; further research is
needed to determine the specific cause of this anomaly, as it
could be due to operator variability, other factors affecting com-
plexity perception, an outlier data point, or a combination of
these factors.
Considering the measures of association reported in Table 12,

high values of Somers’ D, Goodman-Kruskal gamma, and Ken-
dall’s tau-a indicate that the model has good predictive ability
[56]. These measures are obtained from the number of concordant,

Fig. 4 Scatterplot of individual perceived complexity versus performance measures for the six product variants

Table 11 Logistic regression table for assembly time

Predictor Coef. SE Coef. p-value Odds ratio

95% confidence
interval

Lower Upper

Const(1) −3.87808 0.924815 0.000
Const(1) −1.57885 0.659122 0.017
Const(3) 0.208728 0.620473 0.737
Assembly time 0.174226 0.0671240 0.009 1.19 1.04 1.36

Note: Goodness-of-Fit test p-value= 0.905.

Fig. 5 Probability of occurrence of the levels of individual per-
ceived complexity as a function of assembly time
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discordant, and tied pairs, which are calculated by forming all pos-
sible pairs of observations (i.e., assembly time values) with the dif-
ferent levels of individual perceived complexity. For the present
case study, 459 total pairs were obtained, since four operators per-
ceived the assembly complexity as “High,” 13 as “Rather high,” 12
as “Moderate,” and 7 as “Rather low.”
Regarding the other performance measures, the association

between perceived complexity and in-process defects, total
defects, and human stress response resulted to be statistically

Table 13 Logistic regression table for In-process defects

Predictor Coef. SE Coef. p-value
Odds
ratio

95%
confidence
interval

Lower Upper

Const(L1) −3.19119 0.756213 0.000
Const(L2) −0.958176 0.501900 0.056
Const(L3) 0.731504 0.503596 0.146
In-process
defects

0.500009 0.210153 0.017 1.65 1.09 2.49

Note: Goodness-of-Fit test p-value= 0.908.

Table 14 Measures of association between In-process defects
and predicted probabilities

Pairs Number Percent Summary measures

Concordant 263 57.3 Somers’ D 0.35
Discordant 103 22.4 Goodman-Kruskal Gamma 0.44
Ties 93 20.3 Kendall’s Tau-a 0.25
Total 459 100.0

Table 12 Measures of association between assembly time and
predicted probabilities

Pairs Number Percent Summary measures

Concordant 323 70.4 Somers’ D 0.42
Discordant 132 28.8 Goodman-Kruskal Gamma 0.42
Ties 4 0.9 Kendall’s Tau-a 0.30
Total 459 100.0 0.42

Table 15 Logistic regression table for Total defects

Predictor Coef. SE Coef. p-Value
Odds
ratio

95%
Confidence
interval

Lower Upper

Const(1) −2.78027 0.700359 0.000
Const(1) −0.696589 0.490750 0.156
Const(3) 0.907236 0.511736 0.076
Total
defects

0.258386 0.150963 0.087 1.29 0.96 1.74

Note: Goodness-of-Fit test p-value= 0.493.

Table 16 Measures of association between total defects and
predicted probabilities

Pairs Number Percent Summary measures

Concordant 249 54.2 Somers’ D 0.25
Discordant 135 29.4 Goodman-Kruskal Gamma 0.30
Ties 75 16.3 Kendall’s Tau-a 0.18
Total 459 100.0

Table 17 Logistic regression table for Human stress response

Predictor Coef. SE Coef. p-Value
Odds
ratio

95%
Confidence
interval

Lower Upper

Const(1) −3.28926 0.786844 0.000
Const(1) −1.11447 0.527668 0.035
Const(3) 0.602590 0.522103 0.248
Human
stress
response

0.0984811 0.0400084 0.014 1.10 1.02 1.19

Note: Goodness-of-Fit test p-value= 0.855.

Table 18 Measures of association between human stress
response and predicted probabilities

Pairs Number Percent Summary measures

Concordant 318 69.3 Somers’ D 0.41
Discordant 129 28.1 Goodman-Kruskal Gamma 0.42
Ties 12 2.6 Kendall’s Tau-a 0.30
Total 459 100.0

Fig. 6 Probability of occurrence of the levels of individual per-
ceived complexity as a function of In-process defects

Fig. 7 Probability of occurrence of the levels of individual per-
ceived complexity as a function of total defects
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significant. Tables and figures reporting the results of OLR for such
performance measures are given in the Appendix (see Tables 13–18
and Figs. 6–8). Conversely, the association with quality control
time and offline defects was found to be not statistically significant,
which is consistent with the results of previous correlation analyses
(see Table 10).

5 Conclusions
In today’s market, manufacturers are required to produce

high-value-added products that meet customer demands and expec-
tations at a competitive price while also complying with sustainabil-
ity requirements. One approach to achieving mass customization is
the use of flexible assembly systems that utilize collaborative
robots, or “cobots,” which can offer increased productivity and
cost savings. However, the use of human–robot collaboration in
assembly tasks can be impacted by the complexity of the assembly.
This paper focused on the impact of perceived complexity on the

performance measures of HRC in assembly tasks. To investigate
this issue, the study used a sample of skilled operators to conduct
the assembly of six variants of electronic boards with different
levels of complexity. Performance measures, including assembly
times, quality control times, in-process defects, offline product
defects, total defectiveness, and human stress response during
assembly, were collected and analyzed. Furthermore, evaluations
on the agreement degrees with 16 complexity criteria and their
importance provided by the operators for each product were gath-
ered to assess individual perceived complexity. Statistical analysis
was conducted on the collected data to quantify the effects of per-
ceived complexity on the HRC performance measures.
The main findings of the present paper are that as complexity per-

ception increases, performance measures tend to worsen, with a neg-
ative impact on assembly time, quality control time, in-process
defects, and human stress response. Furthermore, for the considered
electronic product variants, defects that occurred in-process were
more frequent compared to defects detected offline during the
quality inspection. The study also showed which complexity criteria
are statistically significantly associated with the performance mea-
sures, thus providing practical recommendations for engineers to con-
sider when designing processes that focus on reducing perceived
complexity and improving overall performance measures. It is impor-
tant to note that, according to these findings, by reducing perceived
complexity, not only the human operators will feel more comfortable
with the task but also the process will be more efficient and less error-
prone, leading to an increase in productivity and a reduction in costs.
Finally, the study highlights that there is no significant association

between perceived complexity and the quality control time and the
offline defects, indicating that these measures of performance of the
production process appear to be independent of the perception that
operators have of the complexity of the assembly process. This infor-
mation is important for engineers to consider in designing and imple-
menting HRC systems as it suggests that a reduction in perceived
complexity may not necessarily result in improvements in these spe-
cific performance measures. Further studies will need to be conducted
to fully understand the underlying reasons and identify potential strat-
egies for improving performance measures related to offline quality
control in the HRC assembly process.
The main innovative aspect of this paper is that it considers mul-

tiple performance measures linked to both the production and the
quality control process, also taking into account human factors
such as the operator’s perceived stress. By evaluating these mea-
sures, this approach allows for a holistic examination of the relation-
ship between perceived complexity and performance, which can
provide valuable insights and recommendations for manufacturers
to optimize processes and improve performance.
This study has some limitations that should be acknowledged.

First, the cobot’s involvement in the study was primarily focused
on performing pick-and-place operations, which are relatively
simple tasks. As a result, the effect of perceived complexity on
the cobot’s performance and its potential interaction with the per-
ceived complexity of the human operator was not fully explored.
Future research should aim to explore different modes of human–
robot collaboration, including scenarios where the cobot performs
more complex tasks while humans provide support and make key
decisions. By considering a broader range of collaboration modes,
a more comprehensive understanding of the effects of perceived
complexity on HRC performance can be achieved.
Second, the results are based on a specific set of electronic board

variants and the subjective concept of perceived complexity may
vary among individual operators. Thus, caution is needed when
generalizing the findings to other HRC assembly systems. Nonethe-
less, the study’s holistic approach provides practical recommenda-
tions for designers and implementers to optimize system
performance by considering the subjective perception of complex-
ity by operators. Further research is needed to validate the findings
in different contexts and with larger sample sizes to ensure greater
statistical power and generalizability.
Additionally, although randomizing the order of the six product

variants during assembly helped increase internal validity by mini-
mizing learning effects, the manufacturing sequence was not explic-
itly controlled. Future research should address this limitation by
implementing more systematic control over the manufacturing
sequence and by investigating learning effects and their relationship
with randomization in more detail.
Finally, based on the derived findings, future work could focus

on developing strategies to mitigate the negative effects of per-
ceived complexity on performance measures. One potential
approach could be to implement training programs for operators
to improve their ability to manage complex product variants. Addi-
tionally, improving the design of the assembly process, such as
using ergonomic fixtures or improving layout [57], could reduce
the complexity of the assembly task and improve performance.
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Nomenclature
i = criterions (i= 1,…, 16)
j = products ( j= 1,…, 6)

Fig. 8 Probability of occurrence of the levels of individual per-
ceived complexity as a function of human stress response
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k = operators (k= 1,…, 6)
C = product variants’ total complexity

amax = maximum amplitude of SRC peaks
amin = minimum amplitude of SRC peaks
aw = amplitude of the wth SCR peak
C1 = complexity of product components
C2 = complexity of assembly connections/liaisons
C3 = complexity of product architecture
Iijk = importance of criterion i, for product j given by

operator k
Lx = xth level of the scale (x= 1,…, 5)
NP = total number of SCR peaks
Vijk = degree of agreement of operator k, for product j on

the criterion i
EDA = electrodermal activity
HRC = human–robot collaboration

ME-MCDM = Multi-Expert-Multi-criteria decision making
Neg(Lx) = negation of Lx

OLR = ordinal logistic regression
PCjk = perceived complexity by the operator k for

product j
RG6 = gripper produced by OnRobotTM

SCL = skin conductance level
SCR = skin conductance response
UR3e = cobot produced by Universal RobotsTM
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